Family: Poaceae
Taxon: Miscanthus floridulus

Synonym: Miscanthus japonicus Andersson
Saccharum floridulum Labill.

Common Name: giant Chinese silver grass
Japanese silver grass
miscanthus

<table>
<thead>
<tr>
<th>Questionnaire</th>
<th>current 20090513</th>
<th>Assessor: Chuck Chimera</th>
<th>Data Entry Person: Chuck Chimera</th>
<th>Designation: H(HPWRA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status:</td>
<td>Assessor Approved</td>
<td></td>
<td></td>
<td>WRA Score 18</td>
</tr>
<tr>
<td>101 Is the species highly domesticated?</td>
<td>y=-3, n=0</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102 Has the species become naturalized where grown?</td>
<td>y=1, n=-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103 Does the species have weedy races?</td>
<td>y=1, n=-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then substitute "wet tropical" for "tropical or subtropical"</td>
<td>(0-low; 1-intermediate; 2-high) (See Appendix 2)</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>202 Quality of climate match data</td>
<td>(0-low; 1-intermediate; 2-high) (See Appendix 2)</td>
<td>Intermediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>203 Broad climate suitability (environmental versatility)</td>
<td>y=1, n=0</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>204 Native or naturalized in regions with tropical or subtropical climates</td>
<td>y=1, n=0</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>205 Does the species have a history of repeated introductions outside its natural range?</td>
<td>y=-2, ?=-1, n=0</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>301 Naturalized beyond native range</td>
<td>y = 1*multiplier (see Appendix 2), n= question 205</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>302 Garden/amenity/disturbance weed</td>
<td>n=0, y = 1*multiplier (see Appendix 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>303 Agricultural/forestry/horticultural weed</td>
<td>n=0, y = 2*multiplier (see Appendix 2)</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>304 Environmental weed</td>
<td>n=0, y = 2*multiplier (see Appendix 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>305 Congeneric weed</td>
<td>n=0, y = 1*multiplier (see Appendix 2)</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>401 Produces spines, thorns or burrs</td>
<td>y=1, n=0</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>402 Allelopathic</td>
<td>y=1, n=0</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>403 Parasitic</td>
<td>y=1, n=0</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>404 Unpalatable to grazing animals</td>
<td>y=1, n=-1</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>405 Toxic to animals</td>
<td>y=1, n=0</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>406 Host for recognized pests and pathogens</td>
<td>y=1, n=0</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>407 Causes allergies or is otherwise toxic to humans</td>
<td>y=1, n=0</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>408 Creates a fire hazard in natural ecosystems</td>
<td>y=1, n=0</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>409 Is a shade tolerant plant at some stage of its life cycle</td>
<td>y=1, n=0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>410 Tolerates a wide range of soil conditions (or limestone conditions if not a volcanic island)</td>
<td>y=1, n=0</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>Code</td>
<td>Type</td>
<td>1</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>411</td>
<td>Climbing or smothering growth habit</td>
<td>y=1, n=0</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>412</td>
<td>Forms dense thickets</td>
<td>y=1, n=0</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>501</td>
<td>Aquatic</td>
<td>y=5, n=0</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>502</td>
<td>Grass</td>
<td>y=1, n=0</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>503</td>
<td>Nitrogen fixing woody plant</td>
<td>y=1, n=0</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>504</td>
<td>Geophyte (herbaceous with underground storage organs – bulbs, corms, or tubers)</td>
<td>y=1, n=0</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>601</td>
<td>Evidence of substantial reproductive failure in native habitat</td>
<td>y=1, n=0</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>602</td>
<td>Produces viable seed</td>
<td>y=1, n=-1</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>603</td>
<td>Hybridizes naturally</td>
<td>y=1, n=-1</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>604</td>
<td>Self-compatible or apomictic</td>
<td>y=1, n=-1</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>605</td>
<td>Requires specialist pollinators</td>
<td>y=-1, n=0</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>606</td>
<td>Reproduction by vegetative fragmentation</td>
<td>y=1, n=-1</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>607</td>
<td>Minimum generative time (years)</td>
<td>1 year = 1, 2 or 3 years = 0, 4+ years = -1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>701</td>
<td>Propagules likely to be dispersed unintentionally (plants growing in heavily trafficked areas)</td>
<td>y=1, n=-1</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>702</td>
<td>Propagules dispersed intentionally by people</td>
<td>y=1, n=-1</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>703</td>
<td>Propagules likely to disperse as a produce contaminant</td>
<td>y=1, n=-1</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>704</td>
<td>Propagules adapted to wind dispersal</td>
<td>y=1, n=-1</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>705</td>
<td>Propagules water dispersed</td>
<td>y=1, n=-1</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>706</td>
<td>Propagules bird dispersed</td>
<td>y=1, n=-1</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>707</td>
<td>Propagules dispersed by other animals (externally)</td>
<td>y=1, n=-1</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>708</td>
<td>Propagules survive passage through the gut</td>
<td>y=1, n=-1</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>801</td>
<td>Prolific seed production (>1000/m2)</td>
<td>y=1, n=-1</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>802</td>
<td>Evidence that a persistent propagule bank is formed (>1 yr)</td>
<td>y=1, n=-1</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>803</td>
<td>Well controlled by herbicides</td>
<td>y=-1, n=1</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>804</td>
<td>Tolerates, or benefits from, mutilation, cultivation, or fire</td>
<td>y=1, n=-1</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>805</td>
<td>Effective natural enemies present locally (e.g. introduced biocontrol agents)</td>
<td>y=-1, n=1</td>
<td>y</td>
<td></td>
</tr>
</tbody>
</table>

Designation: H(HPWRA)
WRA Score: 18
Supporting Data:

<table>
<thead>
<tr>
<th>Source</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011. WRA Specialist. Personal Communication.</td>
<td>[Is the species highly domesticated? No] No evidence</td>
</tr>
<tr>
<td>2011. WRA Specialist. Personal Communication.</td>
<td>NA</td>
</tr>
<tr>
<td>2011. WRA Specialist. Personal Communication.</td>
<td>NA</td>
</tr>
<tr>
<td>2011. USDA, ARS, National Genetic Resources Program, Germplasm Resources Information Network (GRIN) [Online Database Index]. National Germplasm Resources Laboratory, Beltsville, Maryland. http://www.ars-grin.gov/cgi-bin/npgs/html/index.pl</td>
<td>[Species suited to tropical or subtropical climate(s) 2-high] Native: ASIA-TEMPERATE China: China [s.e.] Eastern Asia: Japan - Honshu [e.], Kyushu, Ryukyu Islands, Shikoku; Taiwan ASIA-TROPICAL Indo-China: Indochina Malesia: Indonesia - Java; Malaysia; Philippines PACIFIC South-Central Pacific: French Polynesia Southwestern Pacific: Fiji</td>
</tr>
</tbody>
</table>
| 1987. Chou, C-H/Hwang, S-Y/Chang, F-C. Population study of Miscanthus floridulus (Labill.) Warb... 1. Variation of Peroxidase and Esterase in 27 Populations in Taiwan. Botanical Bulletin of Academia Sinica. 28: 247-281. | [Broad climate suitability (environmental versatility)? Yes] Miscanthus floridulus (Labill.) Warb., a dominant endemic grass, is widely distributed in areas of roadsides, hillsides, riverbed, and abandoned fields from low elevation to high elevation in Taiwan … Hsu (1986) found that the ubiquitous distribution of Miscanthus floridulus is due in part to the behavior of seed germination insensitive to temperature … It is thus thought that the grass should possess a wide heterogeneity, resulting in a wide adaptability to different environmental regimes, such as high salinity, polluted soil, and severe dry land."
| 2000. Space, J.C./Falannruw, M.. Observations on invasive plant species in Micronesia. Report to the Pacific Islands Committee, Council of Western State Foresters. USDA Forest Service, Honolulu, HI | [Native or naturalized in regions with tropical or subtropical climates? Yes] "Sword grass (Miscanthus floridulus) is especially common, sometimes in fairly pure stands on volcanic soils on Guam. It is also present in the Northern Marianas, Chuuk, Pohnpei and Kosrae as well as American Samoa."
| 2000. Space, J.C./Falannruw, M.. Observations on invasive plant species in Micronesia. Report to the Pacific Islands Committee, Council of Western State Foresters. USDA Forest Service, Honolulu, HI | [Native or naturalized in regions with tropical or subtropical climates? Yes] "Giant miscanthus is native to Japan, the Ryukyu Islands, Taiwan, and other islands in that part of the Pacific."
| 2011. Floridata. Miscanthus floridulus. http://www.floridata.com/ref/m/misc_flo.cfm | [Does the species have a history of repeated introductions outside its natural range? Yes] "This and other species of Miscanthus grow so much during a single growing season that they are used for biomass energy production in Europe and Asia. " |
| 2000. Space, J.C./Falannruw, M.. Observations on invasive plant species in Micronesia. Report to the Pacific Islands Committee, Council of Western State Foresters. USDA Forest Service, Honolulu, HI | [Naturalized beyond native range? Yes] "Sword grass (Miscanthus floridulus) is especially common, sometimes in fairly pure stands on volcanic soils on Guam. It is also present in the Northern Marianas, Chuuk, Pohnpei and Kosrae as well as American Samoa."

Miscanthus floridulus (Poaceae)
Since 1999, 40 new plant species have been detected in Western Australia. These include Canary Island’s St John’s Wort (Hypericum canariense), a serious weed in California and Hawaii, which has the potential to devastate coastal ecosystems, and as well as swordgrass (Miscanthus floridulus), which is a controlled species under Commonwealth quarantine and WA laws but was found in a nursery in late 2002.

We finally got a confident name for that large bunchgrass found on the first day of delimiting surveys for ChrOdo. We have a well respected grass expert, Jef Veldkamp, visiting the herbarium right now to do ID’s and he decided the grass was Miscanthus floridulus. This is a listed HI state noxious weed, and has not been collected before in the State, so the KTA location may well be the only place it exists. ...Although we weren’t surveying for it officially, it seemed somewhat sparingly naturalized there. I only remember hearing about a few plants people noticed.

Miscanthus floridulus colonises disturbed land and old gardens, particularly above 1 800m. [A weed of agriculture]

Miscanthus floridulus is an ornamental and invasive grass native to Asia that has naturalized in several areas of the Middle Atlantic United States. Predicting how likely miscanthus is to become invasive in other areas of the US is a concern of ecologists and horticulturists. The objective of this study was to measure the competitive ability of miscanthus with an aggressive native grass, switchgrass (Pancium virgatum L. [Poaceae]), in order to show which grass would be more likely to dominate when the two species were grown together. Although switchgrass is a smaller plant than miscanthus, in this greenhouse experiment it was significantly taller and had more vegetative and flowering culms than miscanthus. Miscanthus however, was a stable competitor and did not significantly change in shoot or root dry weight as 2 and 4 switchgrass plants replaced the respective number of miscanthus plants in each treatment. When miscanthus biotypes from four locations were compared, the Pennsylvania biotype was significantly larger and more competitive with switchgrass than was the Washington, DC biotype. As switchgrass plants were replaced with miscanthus, the shoot and root dry weights of the remaining switchgrass plants increased significantly, showing a higher competitive ability of switchgrass. Despite the fact that switchgrass was more competitive with itself than miscanthus, the highest overall dry weight per treatment contained eight switchgrass plants. Miscanthus showed stable, competitive growth when planted together with switchgrass and it is predicted to likely do the same in a field setting.

Miscanthus floridulus (Poaceae)
Miscanthus floridulus (Poaceae)

[Congeneric weed? Yes] "Miscanthus sinensis (Anderss.) is a perennial grass species that has been grown widely as an ornamental since the late 1800s and is now being considered for bioenergy production in the United States. With its ability to grow from seed and tolerate cold climates, this species offers practical advantages over current cultivars of the higher-yielding hybrid species, M. × giganteus. Yet a large-scale release of M. sinensis for bioenergy production in colder northern regional areas could result in new invasions into natural areas. We show, with reference to historical records and data collected in six wild US populations of M. sinensis in 2009, that ornamental varieties of this species have a long history of localized escape in the Eastern United States, primarily within the Appalachian region. To prevent further escape and gene flow, we recommend the development of sterile or functionally sterile varieties of M. sinensis or the restriction of its usage as a donor of genetic material to new sterile cultivars of M. × giganteus. Other appropriate precautions for new biomass varieties include experimental demonstration of low invasiveness in the target region ahead of commercial production, along with post introduction stewardship programs."

[Produces spines, thorns or burrs? No] "Plant tufted, robust. Culms erect, 1.5–4 m tall, 6–15 mm in diam., unbranched, nodes usually glabrous, or uppermost sometimes bearded. Leaves cauleine, congested; leaf sheaths longer than internodes, overlapping, glabrous, pilose at throat; leaf blades linear, flat, tough, 20–85 × 0.5–4 cm, glabrous, midrib prominent, margins scabrid, base rounded, apex acuminate; ligule 1–3 mm, densely pilose on back. Panicle oblong or elliptic, dense, 20–50 cm; axis 25–45 cm. Racemes numerous, 10–30 cm, appressed or ascending, glabrous, scaberulous; rachis internodes puberulous, nodes glabrous; lower pedicel 1–3.5 mm, upper pedicel 2.5–8 mm. Spikelets 2.5–4(–6) mm, awned; callus hairs 4–6 mm, white, spreading, as long as the spikelet; glumes subequal, membranous, golden brown, 2.5–4(–6) mm, margins pilose near apex, veins obscure, apex acuminate; lower lemma lanceolate, hyaline, 3–3.5 mm, veinless, pilose; upper lemma similar to lower, 2–2.5 mm; awn genulate, 5–6(–10) mm; upper palea a small hyaline scale. Anthers 3, 1–1.5 mm. Caryopsis oblong, ca. 1.5 mm."

[Allelopathic? Yes] "An unique pattern of herb exclusion by a dominant species of Miscanthus floridulus is found ubiquitously throughout the Island. It is found that the aqueous leaf leachate of Miscanthus floridulus exhibits the significant inhibition on the growth of lettuce. The aqueous extracts of leaves and soils collected from the Miscanthus area also show toxic effect. Furthermore, toxic spots are found on the chromatogram of the ether fraction of aqueous extract of Miscanthus leaves. Seven phytoxins are identified by means of paper chromatography. They are cis and trans p-coumaric acid, ferulic, vanillic, syringic, p-hydroxybenzoic, and (0-hydroxyphenyl) acetic acids. In addition, one toxic spot on chromatogram has not yet been identified. Thus, it appears that the bare areas associated with Miscanthus stands are primarily due to allelopathy."

[Allelopathic? Yes] "Allelopathy is defined and its effects are considered in relation to yield reductions in continuously cropped sugarcane, asparagus and Digitaria decumbens and 2nd rice crops in Taiwan. The allelopathic mechanisms of some aggressive grasses including Miscanthus floridulus, native to Taiwan and D. decumbens are discussed. Allelopathy in forest ecosystems is reviewed with reference to some bamboo species and the allelopathic effect of Leucaena leucocephala. The phytotoxicity of Cunninghamia lanceolata litter on Pennisetum clandestinum growth and the beneficial and phytotoxic effect of cover crops on orchard plants and vegetable crops and of Vitex negundo on pasture grasses are outlined. Regulation of allelopathy by environmental factors is discussed."

[Allelopathic? Yes] "Allelopathy is defined and its effects are considered in relation to yield reductions in continuously cropped sugarcane, asparagus and Digitaria decumbens and 2nd rice crops in Taiwan. The allelopathic mechanisms of some aggressive grasses including Miscanthus floridulus, native to Taiwan and D. decumbens are discussed. Allelopathy in forest ecosystems is reviewed with reference to some bamboo species and the allelopathic effect of Leucaena leucocephala. The phytotoxicity of Cunninghamia lanceolata litter on Pennisetum clandestinum growth and the beneficial and phytotoxic effect of cover crops on orchard plants and vegetable crops and of Vitex negundo on pasture grasses are outlined. Regulation of allelopathy by environmental factors is discussed."

[Parasitic? No] No evidence

[Unpalatable to grazing animals? No] "In the valley of Eiaone, just west of Puamau, Mr. Henry Lie, a resident there for fifty years, has watched Miscanthus floridulus (discussed below) a conspicuous tall grass disappear from the valley's precipitous western flank under grazing pressure from his goats and sheep, only to witness a subsequent invasion of the same locality by T. rosea."

Print Date: 8/12/2011
Miscanthus floridulus (Poaceae)

[Unpalatable to grazing animals? No] "...domesticated local grasses such as Miscanthus floridulus Warb. Ex K. Schum & Lauterb., Digitaria sanguinalis (L.) Scop., Sorghum propinquum (Kunth.) Hitchcock, Hemarthria compressa R. Br., and Pennisetum polysthachyon Schult. have been cultivated and utilized for many years in the southern provinces (Hong 1985, Hwang et al. 1986..."

[Unpalatable to grazing animals? No] "The plants are cultivated for hedges and as ornamentals, the rhizomes are used for medicine, the culms are used for papermaking, and the young leaves are used for forage."

[Unpalatable to grazing animals? No] "Palatable to cattle but little or no use by deer and other wildlife."

[Toxic to animals? No] "The plants are cultivated for hedges and as ornamentals, the rhizomes are used for medicine, the culms are used for papermaking, and the young leaves are used for forage."

[Toxic to animals? No] No evidence, and palatable to grazing animals

[Host for recognized pests and pathogens? Yes] "Research by Egan (1965) showed that chlorotic streak infects various species of Saccharum...Other species into which the disease has been transmitted include Brachiaria mutica, Erianthus procerus, Miscanthus floridulus..."

[Host for recognized pests and pathogens? Yes] "122 Fungus-Host combinations in the Fungus Host database"

[Causes allergies or is otherwise toxic to humans? No] "The plants are cultivated for hedges and as ornamentals, the rhizomes are used for medicine, the culms are used for papermaking, and the young leaves are used for forage."

[Causes allergies or is otherwise toxic to humans? No] No evidence

[Creates a fire hazard in natural ecosystems? Yes] "In leeward areas from 300 to 1000 m anthropogenic grasslands of Miscanthus, Paspalum, and Rhynchelytrum have been induced by fires and overgrazing." [grasslands promoted and in turn, carry fire]

[Creates a fire hazard in natural ecosystems? Yes] "In burned areas Casuarina saplings were killed by the fire, but the Miscanthus recovered;" [The Marianas] *

[Creates a fire hazard in natural ecosystems? Yes] "Guam is covered with Miscanthus floridulus because this grass species quickly flourishes in areas made available by repeated burning."

[Creates a fire hazard in natural ecosystems? Yes] "The lower leaf blades tend to fall off in late summer, adding fuel to wildfire hazard."

[Is a shade tolerant plant at some stage of its life cycle? Possibly no] "Light: Giant miscanthus does best in full sun. It is likely to stretch for the sun and wind up falling over if planted in too much shade."

[Is a shade tolerant plant at some stage of its life cycle? Possibly] "Part to light shade"
Miscanthus floridulus

Designation = High Risk

WRA Score = 18

1998. **Mueller-Dombois, D./Fosberg, F. R.. Vegetation of the tropical Pacific islands.** Springer-Verlag, New York [Forms dense thickets? Yes] "The reed grass Miscanthus floridulus is often admixed, but it forms another dominant herbaceous vegetation type on deeper soils. The Miscanthus grassland grows in 2-m-tall thickets on relatively fertile colluvium in valleys and on lower slopes." [Fiji] "The loose volcanic ash that covered large areas, especially on the western side, was vegetated largely by an almost pure stand of Miscanthus floridulus. This formed a coarse, harsh, brakelike grassland 1 to 3 meters in height and very dense in places." [The Marianas]

2001. **FAO. Global Forest Fire Assessment - 1990-2000.** Working Paper 55. Forest Resources Assessment Programme, Forestry Department, Rome [Forms dense thickets? Yes] "Wild yams often grow among dense stands of a tall grass (or reeds, Miscanthus floridulus) whose thickets are difficult to penetrate and where the emerging shoots of yams are hidden from view. Fijians burn the thickets over large areas so that the emerging shoots can be easily seen and the tubers dug up free of the hindrance of dense vegetation."

1991. **Wang, Y.C./Lee, M.L.. The distribution of reserve carbohydrates and their relationship with shooting ability in Miscanthus species in Taiwan.** Journal of Taiwan Livestock Research. 24(1): 41-50. [Geophyte? Potentially] "Rhizome reserve carbohydrate contents decreased from mid-Sep. until Mar. when they increased again; the level also decreased from late May and increased again in Aug. The number of regrowth shoots after cutting and yield decreased with increased cutting frequency. Regrowth ability was positively related to the rhizome reserve starch content." [rhizome as reserve to reshooting, but no indication of whether storage is extensive enough to be considered a geophyte]
Designation = High Risk
WRA Score = 18

http://flora.huh.harvard.edu/china/mss/volume22/index.htm

http://www.pfaf.org/user/Plant.aspx?LatinName= Miscanthus+floridulus

http://www.floridata.com/ref/m/misc_flo.cfm
<table>
<thead>
<tr>
<th>Source</th>
<th>Date</th>
<th>Note</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floridata. Miscanthus floridulus.</td>
<td>2011</td>
<td>http://www.florida.com/ref/m/misc_flo.cfm</td>
<td>[Propagules likely to disperse as a produce contaminant? Potentially] "The flowerheads are used in floral arrangements, both fresh and dried plumes persisting indefinitely." [Seeds could potentially be spread in dried flower arrangements]</td>
</tr>
<tr>
<td>Q-bank Invasive Plants. Miscanthus floridulus.</td>
<td>2011</td>
<td>http://www.q-bank.eu/Plants/BioloMICS.aspx?Link=T&TableKey=4917900000000008&Rec=1118&Fields=All</td>
<td>[Propagules likely to disperse as a produce contaminant? Potentially] "Potential seed contaminant"</td>
</tr>
<tr>
<td>USDA, ARS, National Genetic Resources Program. Germplasm Resources Information Network (GRIN) [Online Database Index]. National Germplasm Resources Laboratory, Beltsville, Maryland.</td>
<td>2011</td>
<td>http://www.ars-grin.gov/cgi-bin/npgs/html/index.pl</td>
<td>[Propagules likely to disperse as a produce contaminant? Potentially] "Weed: potential seed contaminant"</td>
</tr>
<tr>
<td>Marshall, A.J./Beehler, B.M.. The ecology of Papua, Part 2. Tuttle Publishing, Tokyo</td>
<td>2007</td>
<td></td>
<td>[Propagules water dispersed? Possibly] "Phragmites karka may form pure stands in seepage areas on slopes and on valley floors. It is also associated with Miscanthus floridulus along river banks and swamp margins, and in very shallow swamps. Both grasses usually form large hummocks, rising well above water level." [Distribution in Papua suggests that seeds may be dispersed, and germination facilitated by water flow]</td>
</tr>
<tr>
<td>WRA Specialist. Personal Communication.</td>
<td>2011</td>
<td></td>
<td>[Propagules survive passage through the gut? Unknown] Seeds may be consumed by grazers, but effects of viability on gut passage unknown</td>
</tr>
</tbody>
</table>

Miscanthus floridulus (Poaceae)

- **Designation = High Risk**
- **WRA Score = 18**

Evidence that a persistent propagule bank is formed (>1 yr)? No "The objectives of this experiment were to determine the relationship between seed longevity and storage period for Miscanthus spp. Seeds of M. floridulus were harvested from Taitung county and mountainous areas at 1600 m asl in Nantou county and those of M. transmorrisonensis from mountainous areas at 2600 m asl in Nantou county. Before germination testing, the seeds were stored in ambient conditions and in a refrigerator at 4°C for 0, 3, 6, 12, 18 and 24 months, respectively. Germination tests were conducted in an incubator at 25°C. The germination ability of the seeds stored in ambient conditions for 6 months was reduced drastically. No germination was observed after storing in ambient conditions for periods of 12 months or more. The germination ability of seeds stored in a refrigerator for up to 24 months was not affected. Seeds of M. transmorrisonensis showed the highest germination ability stored in a refrigerator for 24 months. No effect was observed on germination ability of the seeds after aging in a dry state at 40°C for 96 hours. However, a significant decrease in germination ability was observed after aging in a moistened state at 40°C for 24 hours, and germination was almost stopped after aging under this condition for 48 hours. Seeds of M. transmorrisonensis were more tolerant to aging treatment than those of M. floridulus. It was concluded that Miscanthus seeds might lose their germination ability 6 months after being dispersed by the wind under natural conditions."

[Effective natural enemies present locally (e.g. introduced biocontrol agents? No]

"Biological – No known natural enemies. Heavy grazing with cattle, horses, sheep, or goats can help control the spread of the plant."