Family: Fabaceae
Taxon: Erythrina poeppigiana
Synonym: Erythrina micropteryx Poepp.
Micropteryx poeppigiana Walp. (basionym)
Common Name: coral tree
immortelle-tree
mountain immortelle
eritrina-do-alto
poró extranjero

<table>
<thead>
<tr>
<th>Questionnaire</th>
<th>Status</th>
<th>Assessor</th>
<th>Data Entry Person</th>
<th>Designation: H(HPWRA)</th>
<th>WRA Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>Is the species highly domesticated?</td>
<td>y=-3, n=0</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>Has the species become naturalized where grown?</td>
<td>y=1, n=-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Does the species have weedy races?</td>
<td>y=1, n=-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then substitute "wet tropical" for "tropical or subtropical"</td>
<td>(0-low; 1-intermediate; 2-high) (See Appendix 2)</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>Quality of climate match data</td>
<td>(0-low; 1-intermediate; 2-high) (See Appendix 2)</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>Broad climate suitability (environmental versatility)</td>
<td>y=1, n=0</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>Native or naturalized in regions with tropical or subtropical climates</td>
<td>y=1, n=0</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>Does the species have a history of repeated introductions outside its natural range?</td>
<td>y=-2, ?=-1, n=0</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>301</td>
<td>Naturalized beyond native range</td>
<td>y = 1*multiplier (see Appendix 2), n= question 205</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>302</td>
<td>Garden/amenity/disturbance weed</td>
<td>n=0, y = 1*multiplier (see Appendix 2)</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>303</td>
<td>Agricultural/forestry/horticultural weed</td>
<td>n=0, y = 2*multiplier (see Appendix 2)</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>304</td>
<td>Environmental weed</td>
<td>n=0, y = 2*multiplier (see Appendix 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>305</td>
<td>Congeneric weed</td>
<td>n=0, y = 1*multiplier (see Appendix 2)</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>401</td>
<td>Produces spines, thorns or burrs</td>
<td>y=1, n=0</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>402</td>
<td>Allopathic</td>
<td>y=1, n=0</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>403</td>
<td>Parasitic</td>
<td>y=1, n=0</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>404</td>
<td>Unpalatable to grazing animals</td>
<td>y=1, n=-1</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>405</td>
<td>Toxic to animals</td>
<td>y=1, n=0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>406</td>
<td>Host for recognized pests and pathogens</td>
<td>y=1, n=0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>407</td>
<td>Causes allergies or is otherwise toxic to humans</td>
<td>y=1, n=0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>408</td>
<td>Creates a fire hazard in natural ecosystems</td>
<td>y=1, n=0</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>409</td>
<td>Is a shade tolerant plant at some stage of its life cycle</td>
<td>y=1, n=0</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>410</td>
<td>Tolerates a wide range of soil conditions (or limestone conditions if not a volcanic island)</td>
<td>y=1, n=0</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>411</td>
<td>Climbing or smothering growth habit</td>
<td>y=1, n=0</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>412</td>
<td>Forms dense thickets</td>
<td>y=1, n=0</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>501</td>
<td>Aquatic</td>
<td>y=5, n=0</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>502</td>
<td>Grass</td>
<td>y=1, n=0</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>503</td>
<td>Nitrogen fixing woody plant</td>
<td>y=1, n=0</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>504</td>
<td>Geophyte (herbaceous with underground storage organs -- bulbs, corms, or tubers)</td>
<td>y=1, n=0</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>601</td>
<td>Evidence of substantial reproductive failure in native habitat</td>
<td>y=1, n=0</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>602</td>
<td>Produces viable seed</td>
<td>y=1, n=-1</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>603</td>
<td>Hybridizes naturally</td>
<td>y=1, n=-1</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>604</td>
<td>Self-compatible or apomictic</td>
<td>y=1, n=-1</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>605</td>
<td>Requires specialist pollinators</td>
<td>y=-1, n=0</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>606</td>
<td>Reproduction by vegetative fragmentation</td>
<td>y=1, n=-1</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607</td>
<td>Minimum generative time (years)</td>
<td>1 year = 1, 2 or 3 years = 0, 4+ years = -1</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>701</td>
<td>Propagules likely to be dispersed unintentionally (plants growing in heavily trafficked areas)</td>
<td>y=1, n=-1</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>702</td>
<td>Propagules dispersed intentionally by people</td>
<td>y=1, n=-1</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>703</td>
<td>Propagules likely to disperse as a produce contaminant</td>
<td>y=1, n=-1</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>704</td>
<td>Propagules adapted to wind dispersal</td>
<td>y=1, n=-1</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>705</td>
<td>Propagules water dispersed</td>
<td>y=1, n=-1</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>706</td>
<td>Propagules bird dispersed</td>
<td>y=1, n=-1</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>707</td>
<td>Propagules dispersed by other animals (externally)</td>
<td>y=1, n=-1</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>708</td>
<td>Propagules survive passage through the gut</td>
<td>y=1, n=-1</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>801</td>
<td>Prolific seed production (>1000/m2)</td>
<td>y=1, n=-1</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>802</td>
<td>Evidence that a persistent propagule bank is formed (>1 yr)</td>
<td>y=1, n=-1</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>803</td>
<td>Well controlled by herbicides</td>
<td>y=-1, n=1</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>804</td>
<td>Tolerates, or benefits from, mutilation, cultivation, or fire</td>
<td>y=1, n=-1</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>805</td>
<td>Effective natural enemies present locally (e.g. introduced biocontrol agents)</td>
<td>y=-1, n=1</td>
<td>y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Designation: H(HPWRA)
WRA Score: 12
Supporting Data:

[Is the species highly domesticated? No] "Little work has been conducted on the genetic improvement of E. poeppigiana. Rodrick et al. (1992) studied the rooting ability of stem cuttings from a variety of sources (ortets with differing bark characteristics, different coffee plantations, established provenance trials and coral trees planted at different seasons), concluding that rooting ability was significantly related to genotype and that broad-sense heritability was high. Larbi et al. (1996) assessed groups of Erythrina provenances, including E. poeppigiana, for rumen degradation parameters (dry matter and N), in order to aid the selection of provenances for detailed nutritional or tree improvement studies."

102. 2011. WRA Specialist. Personal Communication. NA

103. 2011. WRA Specialist. Personal Communication. NA

[Does the species have a history of repeated introductions outside its natural range? Yes] "E. poeppigiana occurs in riverine and upland forests of the Amazon and Orinoco basins and adjacent regions of tropical South America. Its native range also includes the moist coastal forests of Columbia and Ecuador. However, the coral tree has become naturalized in much of Central America including Trinidad and Tobago, Panama and Costa Rica, as well as in southern Florida (USA) (Powell and Westley, 1993)."

[Quality of climate match data? 2-high] "E. poeppigiana occurs in riverine and upland forests of the Amazon and Orinoco basins and adjacent regions of tropical South America. Its native range also includes the moist coastal forests of Columbia and Ecuador. However, the coral tree has become naturalized in much of Central America including Trinidad and Tobago, Panama and Costa Rica, as well as in southern Florida (USA) (Powell and Westley, 1993)."

[Broad climate suitability (environmental versatility)? Yes] "- Altitude range: 150 - 2400 m
- Mean annual rainfall: 1000 - 4000 mm
- Rainfall regime: summer; uniform
- Dry season duration: 0 - 6 months
- Mean annual temperature: 18 - 28°C
- Mean maximum temperature of hottest month: 20 - 28°C
- Mean minimum temperature of coldest month: 16 - 21°C
- Absolute minimum temperature: > 12°C [Elevation range >1000 m demonstrates environmental versatility]"

[Native or naturalized in regions with tropical or subtropical climates? Yes] "E. poeppigiana occurs in riverine and upland forests of the Amazon and Orinoco basins and adjacent regions of tropical South America. Its native range also includes the moist coastal forests of Columbia and Ecuador. However, the coral tree has become naturalized in much of Central America including Trinidad and Tobago, Panama and Costa Rica, as well as in southern Florida (USA) (Powell and Westley, 1993)."

[Does the species have a history of repeated introductions outside its natural range? Yes] "Most introductions of E. poeppigiana have been for shade trees in coffee or cocoa plantations. These introductions occurred as early as the eighteenth century in Venezuela. Other introductions as shade trees have occurred in Costa Rica (Kass et al., 1989, 1994), Columbia, Guatemala, Honduras and Cuba. Recent introductions have occurred in East Africa including Kenya (Hoekstra, 1984), Burundi (Akyeampong et al., 1995) and Rwanda, primarily for use in agroforestry systems including fodder banks, intercropping with annuals and in coffee plantations."

[Naturalized beyond native range? Yes] "Erythrina poeppigiana (Walpers) O. F. Cook was introduced from the lower slopes of the Venezuelan Andes in the 19th century (H. D. Adams, pers. comm.; B. A. Krukoff, pers. comm.). Planted as cacao shade on both islands, E. poeppigiana now reproduces naturally and has become the most common large tree in disturbed habitats. [Trinidad & Tobago]

[Naturalized beyond native range? Yes] "Seedlings and saplings were commonly seen within 100 m of planted specimens; however, spontaneous plants of all life stages, including flowering and fruiting individuals, are scattered throughout the Arboretum. A second generation of seedlings and saplings was noted around the larger spontaneous individuals. A naturalized flowering specimen was also observed in secondary forest on neighboring property"
<table>
<thead>
<tr>
<th>Page</th>
<th>Reference</th>
<th>Designation</th>
<th>WRA Score</th>
<th>Naturalized Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>304</td>
<td>2000. Moyroud, R.. Exotic Weeds that Threaten the Caribbean: A Brief Overview and Early Alarm Call. Wildland Weeds. 3(2): 4-8.</td>
<td>Environmental weed? Potentially "In Jamaica and Puerto Rico, the damage caused by pest plants may be more subtle...Erythrina poeppigiana was introduced from Peru as a fast-growing shade tree, but is now spreading throughout many forests, perhaps replacing the native Erythrina species." [Reports documents the possibility of native species replacement, but does not confirm this]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>305</td>
<td>1996. Smith, J.M.B.. Notes on Coral-Trees (Erythrina) in Australia with Particular Reference to E. crista-galli L. in New South Wales. Australian Geographical Studies. 34: 225–236.</td>
<td>Congeneric weed? Yes "Erythrina variegata, E. insularis and E. vespertilio (the last two possibly conspecific) are native in Australia, and E. fusca occurs as viable seeds in sea drift on Queensland beaches. Higher diversity elsewhere suggests an extra-Australian origin, with dispersal to Australia by sea drift or birds. At least two introduced ornamental species, E. crista galli (native to South America) and E. X sylvis (a sterile hybrid), have become naturalised. Erythrina crista-galli has become abundant on the Wilson-Richmond floodplain, NSW. Its seeds germinate progressively over three years, and may be dispersed by floodwaters. As well as being perceived locally as invasive weeds, naturalised Coral-trees also have conservational value, particularly with regard to nectarivorous birds."</td>
<td></td>
<td></td>
</tr>
<tr>
<td>306</td>
<td>2010. Pittwater Council. Woody Weeds (Trees and Shrubs) - Cocks Comb Coral Tree. http://www.pittwater.nsw.gov.au/environment/noxious_weeds/shrubs/cocks_comb_coral_tree</td>
<td>Congeneric weed? Yes "Coral Tree (Erythrina crista-galli) is a significant woody weed within the Mullet Creek Catchment. Erythrina crista-galli is easily dispersed by seed and suckering. Branches left on the ground can re-grow into new plants. This species invades natural areas such as creeklines and wetlands. Erythrina crista-galli is a deciduous tree and requires treatment in the growing season. It can be drilled or frilled in-situ and poisoned as felled trees and branches will re-shoot if in contact with the ground."</td>
<td></td>
<td></td>
</tr>
<tr>
<td>401</td>
<td>2005. CAB International. Forestry Compendium. CAB International, Wallingford, UK</td>
<td>Produces spines, thorns or burrs? Yes "E. poeppigiana (coral tree) is a multi-stemmed, deciduous, often spiny tree with a spreading crown, reaching a height of up to 20-30 m (Powell and Westley, 1993)...E. poeppigiana grows up to 30 m with a mean d.b.h. of 1.2 m (up to 2 m). The bark is greenish brown to grey brown, smooth or slightly furrowed and warty or spiny (Powell and Westley, 1993)."</td>
<td></td>
<td></td>
</tr>
<tr>
<td>402</td>
<td>2005. CAB International. Forestry Compendium. CAB International, Wallingford, UK</td>
<td>Allelopathic? No "It is an important species in agroforestry systems (Russo, 1990), particularly for intercropping. It is one of the most important shade trees planted in cocoa, coffee and pepper plantations in Central America, and it is used occasionally as a shade tree in Indonesia (Oyen, 1997)."</td>
<td></td>
<td></td>
</tr>
<tr>
<td>404</td>
<td>2005. CAB International. Forestry Compendium. CAB International, Wallingford, UK</td>
<td>Unpalatable to grazing animals? No "E. poeppigiana is used frequently in live fences, and as a shade or forage tree in pasture for cattle and goats, especially with Cynodon plectostachyus, C. niemfuensis and Pennisetum purpureum (Oyen, 1997); however, pigs have been reported to suffer hair loss...Brewbaker (1987) ranks E. poeppigiana as a poor fodder species since the genus is known to contain high amounts of alkaloids and toxic substances. However, this is countered by both Romero et al. (1993) and Camero (1993) who showed improvements in milk production from cows fed with fodder from E. poeppigiana."</td>
<td></td>
<td></td>
</tr>
<tr>
<td>405</td>
<td>2005. CAB International. Forestry Compendium. CAB International, Wallingford, UK</td>
<td>Toxic to animals? Possibly "...pigs have been reported to suffer hair loss...Brewbaker (1987) ranks E. poeppigiana as a poor fodder species since the genus is known to contain high amounts of alkaloids and toxic substances. However, this is countered by both Romero et al. (1993) and Camero (1993) who showed improvements in milk production from cows fed with fodder from E. poeppigiana."</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Erythrina poeppigiana (Fabaceae)

Designation = High Risk
WRA Score = 12

 - [Toxic to animals? Possibly] "The seeds, bark and roots contain the alkaloids erysodine, eryspoline, erysophthione, erysovine and hypaphorine and can be ground to produce insecticides and a preparation to stun fish so that they can be easily caught. Leaves are also reported to contain toxic alkaloids but no adverse effects have been reported for cattle or goats consuming the forage."

 - [Toxic to animals? Possibly] "The presence of potentially toxic alkaloids in the leaves of *E. poeppigiana* has not affected the health of cattle or goats, but feeding leaves to non ruminants may be risky."

 - [Host for recognized pests and pathogens? Unknown] "Because *E. poeppigiana* is not considered a timber species, little work has been conducted on diseases and potential pest problems. The principal pests associated with coral tree and other Erythrina species are weevils (Chalocodermus dentipes), shoot borers (Terastia mcellosellus) and June beetles (Hilje et al., 1993). Kettler (1995) reported an infestation of *E. poeppigiana* by a root mealabug (Planococcus citri) that resulted in an associated fungal infection of the roots."

 - [Forming dense thickets? Unknown] "*A range of fungal diseases attack* *E. poeppigiana* including leaf spots (Cercospora, Phyllosticta and Colletotrichum spp.) wilts (Verticillium spp.) and black mildew (Meliola spp.). It is affected by root knot nematodes (Meloidogyne spp.). *E. poeppigiana* is a host for June beetles (Phyllophaga menetriesi) which lay eggs on young leaves. The larvae subsequently feed on the roots of associated crops including maize, although the damage is reported to be minor."

 - [Causes allergies or is otherwise toxic to humans? Possibly] "*E. poeppigiana* contains curare-like alkaloids which act as muscle relaxants and may even cause paralysis and the tree also has insecticidal properties. In Ecuador, the bark is made into a paste and applied to strained ligaments."

 - [Host for recognized pests and pathogens? Unknown] "*E. poeppigiana* contains curare-like alkaloids which act as muscle relaxants and may even cause paralysis and the tree also has insecticidal properties. In Ecuador, the bark is made into a paste and applied to strained ligaments."

 - [Grass? No] Fabaceae

 - [Grass? No] Fabaceae

 - [Nitrogen fixing woody plant? Yes] "It is also valued for its high production of green manure and mulch, its nitrogen fixing properties with Bradyrhizobium..." Fabaceae

- **1997.** Hanum, I.F./Van der Maesen, L.J.G. (eds.), *PROSEA : Plant Resources of South-East Asia 11, Auxiliary Plants*. Prosea Foundation, Bogor, Indonesia
 - [Tolerates a wide range of soil conditions? Yes] "*Erythrina poeppigiana* is a host for some leguminous tree species, *E. poeppigiana* can tolerate a range of soil conditions and can be found growing on inceptisols, ultisols and oxisols (USDA classification). Soil descriptors - Soil texture: light; medium - Soil drainage: free; seasonally waterlogged - Soil reaction: acid; neutral - Special soil tolerances: infertile - Soil types: alluvial soils; terralsols; volcanic soils; ultisols; tropical soils; mountain soils"
<table>
<thead>
<tr>
<th>Page</th>
<th>Reference</th>
<th>Information</th>
</tr>
</thead>
</table>
| 504 | 2005. CAB International. Forestry Compendium. CAB International, Wallingford, UK | [Geophyte (herbaceous with underground storage organs -- bulbs, corms, or tubers)? No] "E. poeppigiana (coral tree) is a multi-stemmed, deciduous, often spiny tree with a spreading crown, reaching a height of up to 20 30 m (Powell and Westley, 1993)."
| 604 | 1988. Neill, D.A.. Experimental Studies on Species Relationships in Erythrina (Leguminosae: Papilionoideae). Annals of the Missouri Botanical Garden. 75(3): 886-969. | [Self-compatible or apomictic? Yes] "Erythrina species are self-compatible, but some inbreeding depression is associated with selfing...Self-incompatibility has previously been reported for seven species of Erythrina: E. senegalensis and E. speciosa (East, 1940); E. crista galli (Fryxell, 1957); E. m tits and E. poeppigiana (Arroyo, 1981); E. leptorhiza (Hernandez & Toledo, 1979); and E. montana (Hernandez, 1982). Only for E. montana was the assertion of self incompatibility supported by evidence from experimental self-polinations and outcrossing controls." |
| 606 | 2005. CAB International. Forestry Compendium. CAB International, Wallingford, UK | [Requires specialist pollinators? No] "There are reports of many non-wood uses of E. poeppigiana in the Americas (Russo, 1990). One primary use is for living fences which flowers for bees and livestock forage, as well as fuelwood and construction posts."
| 608 | 2002. Vozzo, J.A.. Tropical Tree Seed Manual. USDA Forest Service, Washington, D.C. | [Minimum generative time (years)? Unknown] "Erythrina poeppigiana is a fast-growing tree, reaching 30 to 35 m in height and more than 1 m d.b.h...The trees grow very quickly, producing a great amount of biomass. Because the roots develop abundant nodulation that allows them to better fix nitrogen, the trees are used in soil conservation and recovery programs (Russo 1984)."
| 701 | 2005. CAB International. Forestry Compendium. CAB International, Wallingford, UK | [Propagules likely to be dispersed unintentionally (plants growing in heavily trafficked areas)? No] "The pods are 12-25 cm long, several seeded and falcate, slightly depressed between the seeds, long-stalked and pointed at both ends. Seeds are 1-2 cm long and weigh about 18.3 g. [Unlikely. Large-seeded with no means of external attachment]"
| 702 | 2005. CAB International. Forestry Compendium. CAB International, Wallingford, UK | [Propagules dispersed intentionally by people? Yes] "Most introductions of E. poeppigiana have been for shade trees in coffee or cacao plantations. These introductions occurred as early as the eighteenth century in Venezuela. Other introductions as shade trees have occurred in Costa Rica (Kass et al., 1989, 1994), Columbia, Guatemala, Honduras and Cuba. Recent introductions have occurred in East Africa including Kenya (Hoekstra, 1984); Burundi (Akyeampong et al., 1995) and Rwanda, primarily for use in agroforestry systems including fodder banks, intercropping with annuals and in coffee plantations." |
| 703 | 2005. CAB International. Forestry Compendium. CAB International, Wallingford, UK | [Propagules likely to disperse as a produce contaminant? No] "The pods are 12-25 cm long, several seeded and falcate, slightly depressed between the seeds, long-stalked and pointed at both ends. Seeds are 1-2 cm long and weigh about 18.3 g. [No evidence, and unlikely that such large seeds would inadvertently contaminate produce]"
| 704 | 2000. Schmidt, L.. Guide to Handling of Tropical and Subtropical Forest Seed. Danida Forest Seed Centre, Humlebaek, Denmark | [Propagules adapted to wind dispersal? Yes] "In Erythrina poeppigiana the seeds remain attached to the entire open pod during wind dispersal" |
Erythrina poeppigiana (Fabaceae)

2000. Schmidt, L.. Guide to Handling of Tropical and Subtropical Forest Seed. Danida Forest Seed Centre, Humlebaek, Denmark

[Propagules bird dispersed? No] "In Erythrina poeppigiana the seeds remain attached to the entire open pod during wind dispersal"

[Propagules water dispersed? Probably yes] "E. poeppigiana occurs in riverine and upland forests of the Amazon and Orinoco basins and adjacent regions of tropical South America." [riverine species]

[Evidence that a persistent propagule bank is formed (>1 yr)? Presumably Yes] "Seed production: Pruning trees once a year will impede flowering. No information regarding seed production was cited."

[Propagules adapted to wind dispersal? Presumably yes] "The 1.5 cm long, bean-type seeds are probably dispersed by wind, as the seed pod is light and papery"

[Propagules dispersed by other animals (externally)? No] "The pods are 12-25 cm long, several seeded and falcate, slightly depressed between the seeds, long-stalked and pointed at both ends. Seeds are 1-2 cm long and weigh about 18.3 g"

[Propagules water dispersed? Probably yes] "E. poeppigiana occurs in riverine and upland forests of the Amazon and Orinoco basins and adjacent regions of tropical South America." [riverine species]

[Propagules bird dispersed? No] "The pods are 12-25 cm long, several seeded and falcate, slightly depressed between the seeds, long-stalked and pointed at both ends. Seeds are 1-2 cm long and weigh about 18.3 g"

[Effective natural enemies present locally? Possibly] "The Erythrina gall wasp has regenerates fairly rapidly and is well suited for either coppicing or pollarding."

[Propagules adapted to wind dispersal? Presumably yes] "The 1.5 cm long, bean-type seeds are probably dispersed by wind, as the seed pod is light and papery"

[Propagules water dispersed? Probably yes] "E. poeppigiana occurs in riverine and upland forests of the Amazon and Orinoco basins and adjacent regions of tropical South America." [riverine species]

[Effective natural enemies present locally? Possibly] "The Erythrina gall wasp has regenerates fairly rapidly and is well suited for either coppicing or pollarding."

[Effective natural enemies present locally? Possibly] "The Erythrina gall wasp has recently invaded a wide swath of Asian and Pacific countries, causing severe damage to several species of Erythrina trees. It poses an imminent threat to native Erythrina species in Latin America, Asia, Australia and the Pacific. While an African origin of the pest is presumed, it's exact home on the continent remains unknown. We examined host plant relationships of the wasp using 71 of the world’s species of Erythrina that are planted in the botanical gardens of Hawaii. Observational and experimental data indicate that species endemic to Africa are more resistant to the wasp than those from other continents. Complete absence of galling on all Erythrina native to Benin, Burundi, Congo, Gambia, Lesoto, Rwanda, and Somalia make those countries highly unlikely to be the origin of the wasp. Mozambique, South Africa, Swaziland, and Zimbabwe were also shown to be unlikely sources. We present susceptibility indices of all 71 Erythrina species, including a number of economically useful trees, and we provide a warning for several species of conservation concern...We found a wide range of susceptibility to gall wasp damage among Latin America’s native Erythrina species (Appendix 1)."

[Effective natural enemies present locally? Possibly] "The Erythrina gall wasp has recently invaded a wide swath of Asian and Pacific countries, causing severe damage to several species of Erythrina trees. It poses an imminent threat to native Erythrina species in Latin America, Asia, Australia and the Pacific. While an African origin of the pest is presumed, it's exact home on the continent remains unknown. We examined host plant relationships of the wasp using 71 of the world’s species of Erythrina that are planted in the botanical gardens of Hawaii. Observational and experimental data indicate that species endemic to Africa are more resistant to the wasp than those from other continents. Complete absence of galling on all Erythrina native to Benin, Burundi, Congo, Gambia, Lesoto, Rwanda, and Somalia make those countries highly unlikely to be the origin of the wasp. Mozambique, South Africa, Swaziland, and Zimbabwe were also shown to be unlikely sources. We present susceptibility indices of all 71 Erythrina species, including a number of economically useful trees, and we provide a warning for several species of conservation concern...We found a wide range of susceptibility to gall wasp damage among Latin America’s native Erythrina species (Appendix 1)."

[Effective natural enemies present locally? Possibly] "The Erythrina gall wasp has recently invaded a wide swath of Asian and Pacific countries, causing severe damage to several species of Erythrina trees. It poses an imminent threat to native Erythrina species in Latin America, Asia, Australia and the Pacific. While an African origin of the pest is presumed, it's exact home on the continent remains unknown. We examined host plant relationships of the wasp using 71 of the world’s species of Erythrina that are planted in the botanical gardens of Hawaii. Observational and experimental data indicate that species endemic to Africa are more resistant to the wasp than those from other continents. Complete absence of galling on all Erythrina native to Benin, Burundi, Congo, Gambia, Lesoto, Rwanda, and Somalia make those countries highly unlikely to be the origin of the wasp. Mozambique, South Africa, Swaziland, and Zimbabwe were also shown to be unlikely sources. We present susceptibility indices of all 71 Erythrina species, including a number of economically useful trees, and we provide a warning for several species of conservation concern...We found a wide range of susceptibility to gall wasp damage among Latin America’s native Erythrina species (Appendix 1)."

[Effective natural enemies present locally? Possibly] "The Erythrina gall wasp has recently invaded a wide swath of Asian and Pacific countries, causing severe damage to several species of Erythrina trees. It poses an imminent threat to native Erythrina species in Latin America, Asia, Australia and the Pacific. While an African origin of the pest is presumed, it's exact home on the continent remains unknown. We examined host plant relationships of the wasp using 71 of the world’s species of Erythrina that are planted in the botanical gardens of Hawaii. Observational and experimental data indicate that species endemic to Africa are more resistant to the wasp than those from other continents. Complete absence of galling on all Erythrina native to Benin, Burundi, Congo, Gambia, Lesoto, Rwanda, and Somalia make those countries highly unlikely to be the origin of the wasp. Mozambique, South Africa, Swaziland, and Zimbabwe were also shown to be unlikely sources. We present susceptibility indices of all 71 Erythrina species, including a number of economically useful trees, and we provide a warning for several species of conservation concern...We found a wide range of susceptibility to gall wasp damage among Latin America’s native Erythrina species (Appendix 1)."

[Effective natural enemies present locally? Possibly] "The Erythrina gall wasp has recently invaded a wide swath of Asian and Pacific countries, causing severe damage to several species of Erythrina trees. It poses an imminent threat to native Erythrina species in Latin America, Asia, Australia and the Pacific. While an African origin of the pest is presumed, it's exact home on the continent remains unknown. We examined host plant relationships of the wasp using 71 of the world’s species of Erythrina that are planted in the botanical gardens of Hawaii. Observational and experimental data indicate that species endemic to Africa are more resistant to the wasp than those from other continents. Complete absence of galling on all Erythrina native to Benin, Burundi, Congo, Gambia, Lesoto, Rwanda, and Somalia make those countries highly unlikely to be the origin of the wasp. Mozambique, South Africa, Swaziland, and Zimbabwe were also shown to be unlikely sources. We present susceptibility indices of all 71 Erythrina species, including a number of economically useful trees, and we provide a warning for several species of conservation concern...We found a wide range of susceptibility to gall wasp damage among Latin America’s native Erythrina species (Appendix 1)."