POPULATION BIOLOGY AND MANAGEMENT OF THE FERAL PIG
(SUS SCROFA L.) IN KIPAHLU VALLEY, MAUI

A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAII IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN ZOOLOGY

DECEMBER 1982

By
Cheong H. Diong

Dissertation Committee:

John S. Stimson, Chairman
Reginald H. Barrett
Williams I. Hugh
Robert A. Kinzie III
Clifford W. Smith
Sidney J. Townsley
We certify that we have read this dissertation and that in our opinion it is satisfactory in scope and quality as a dissertation for the degree of Doctor of Philosophy in Zoology.

DISSERTATION COMMITTEE

[Signatures]

Chairman

[Signatures]

[Signatures]

[Signatures]
ACKNOWLEDGEMENTS

This study was supported by the United States National Parks Service under Contract CX 8000 8 0011, through the Cooperative Parks Resources Studies Unit, Department of Botany, University of Hawaii at Manoa. I gratefully acknowledge the funding. Haleakala National Park gave me permission to conduct this study in Kipahulu Valley. I thank the Park Superintendent, Hugo Huntzinger, and his chief rangers, Gordon Joyce, Kenneth Cox and Kimo Cababat, for their support and cooperation. Several park personnel assisted in field logistics and other aspects of the field work. I wish to especially mention John Kjargaard, Terrence Lind, Louis Pua, John Brown Jr., Alexander Smith Jr. and Alvin Yoshinaga. The goodwill and kindness that I received so generously from the people of the Hana Community are pleasant and memorable experiences which I will always cherish.

Several institutions and individuals gave me their kind cooperation. I thank Hana Medical Center for use of its centrifuge; Dr. Milton Howell for the use of his facilities; Maui Community College in Kahului, for extensive use of its science laboratories and welding workshop facilities; Department of Geography, Manoa, for use of laboratory facilities; Fronk Clinic and St. Francis Hospital, Honolulu, for use of radiographic facilities; Dr. Everitt Wingert for map reproductions; Roger Watanabe of the Soil Testing Service, Cooperative Extension Service, University of Hawaii and U.S.D.A. Cooperative, Manoa, for analyzing soil samples; and Stanley Ishizaki, Animal Science Department, Manoa, for performing proximate analysis of plant specimens.
The following individuals painstakingly identified vertebrate and invertebrate specimens I sent to them: Dr. P. Quentin Tomich, State Department of Health, Hawaii; Dr. Gordon Gates, Orange City, Florida; E. Easton, British Museum (Natural History), London, United Kingdom; Dr. Yoshio Kondo, Bishop Museum, Honolulu; and Alvin Yoshinaga, University of Hawaii at Manoa. The State Department of Agriculture assisted in the identification of parasites and in screening serum samples for diseases.

My fieldwork received renewed emphasis and momentum from Dr. Reginald Barrett's field visit in March 1979. I thank him for his interest in my work and his many useful suggestions. Encouragement by Dr. Clifford Smith throughout the period of my fieldwork is most gratefully acknowledged. He counselled and rescued me on several occasions when public relation issues seemed either too sensitive or insurmountable for me to handle.

Dr. John Stimson served as my Dissertation Chairman. I thank him for advice on various aspects of my writing. Others who have provided suggestions on the organization of this dissertation include Dr. Reginald H. Barrett and Dr. P. Quentin Tomich. The entire dissertation was read by Dr. Tomich, who provided many helpful suggestions. The following critically commented on these chapters: Dr. C. S. Chung (Chapter 11); Drs. N. A. Polombok, A. Y. Miyahara, R. M. Nakamura and S. A. Perri (Chapter 10); Dr. C. H. Lamoureux (Chapter 2); and Terrence Lind, Jack Lind and Kimo Cababat (Chapter 4). The table on Nomenclature, synonyms, common names and distribution of wild pigs
(Table 1) was critically reviewed by Dr. C. P. Groves at the Australian National University.

My wife, by some misfortune, has become associated with this study, and in performing functions as diverse as stomach content analysis, pick-up of specimens at the airport and delivery to various departments for analyses, data analyses and deciphering my drafts for a typeprint—duties quite alien to her professional training but which she almost always obliged. Finally, I wish to acknowledge Peggy Daniel, June Saito and the Cooperative Parks Resource Studies Unit for assistance in producing this final draft on the HP3000 Text and Document Processor.
ABSTRACT

The population ecology of the feral pig (Sus scrofa) was investigated in a topographically closed Hawaiian rain forest in Kipahulu Valley, Maui. This population, with a feral history of 35 years, probably erupted six generations after the onset of feralization. Emphasis was placed on investigating: (1) the factors which could limit abundance, and (2) population processes unique to this habitat. A natural history approach was used to examine the hypothesis that food quality, rather than quantity, could be limiting the population. Additionally, because of specific information needs of the National Park Service, particularly with regard to control programs, this study also sought to obtain management-related information as a basis for management recommendations.

Food habits were characterized by: (1) an omnivorous diet, consisting mostly of plant matter, (2) a staple of tree ferns, (3) a seasonal switch from tree ferns to strawberry guava, and (4) a strong reliance on earthworms as a source of animal protein. The dietary range covered 40 plant species; 62.5% were herbaceous species, 32.5% trees and a woody vine. Seventy percent of the forage were native plants of which 95.7% were endemics. Tree ferns were the most concentrated source of sugar and starch. Plant foods were low in protein, but feeding habits of the pigs resulted in maximization of foods rich in nitrogen. Blood profiles showed adequate nitrogen intake and protein status. Pig feeding habits resulted in the death of some native trees and damage to the ecosystem.
Feral pigs actively disperse the strawberry guava by transporting large quantities of seeds in their digestive tracts. Gut transport did not affect seed viability but hastened germination.

Home ranges averaged 1.6 (0.7-2.9) km2, and overlapped extensively. Lateral exit movement from the upper plateau into Koukouai gulch was established. The diel activity pattern was biphasic, with high activity in early morning and late afternoon.

High juvenile mortality and a shorter ecological longevity characterize this population. The median age was 16.2 months; male:female:juvenile ratio was 2.6:2.8:1. Breeding occurs throughout the year. Prenatal survival was less than 73.3%, while postnatal survival from birth to six months was 40%. The factors which could limit abundance were categorized into those that act on: (1) juveniles, (2) adults in their second year, and (3) older animals. Accidental mortality, miring of the young, habitat factors and mongoose predation were identified as the sources of juvenile mortality. Metastrongyloid and kidney worm infection were considered important direct and indirect causes of adult mortality. Failure of dentition appears to be the most likely process limiting the lifespan of individuals.

Chemical blood analyses revealed neutrophilic leukocytosis in the population. The pathologic condition was a probable consequence to some disease factor, microbial milieu in the habitat or to nematode parasitism.
A 17-month mark-recapture program in the upper-plateau koa, ohia and lower plateau forests yielded a population estimate of 100-300 pigs, a catch success of 1.8 pigs per 100 trap nights. Density and trappability varied among forest types. Visitation frequency to trap sites averaged 17.5% of total trap nights.

Management is recommended principally because the feral pig disrupts and destroys native forests and replaces the native ecosystem with the exotic strawberry guava, which it effectively disperses. The management recommendations proposed herein incorporate a built-in eradication strategy to free the Valley of pigs and emphasize an integration of various control methods to maximally impact both young and old animals.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iii

ABSTRACT .. vi

LIST OF TABLES .. xvii

LIST OF ILLUSTRATIONS ... xxi

CHAPTER 1. INTRODUCTION ... 1

CHAPTER 2. LITERATURE REVIEW .. 8

Semantics .. 8

(a) Pig, swine, hog, boar ... 8

(b) Wild, feral, domestic, pariah ... 8

The Pig .. 13

(a) Classification, nomenclature, and distribution 13

(b) Historical ecology of pig domestication 27

Differences among Domestic, Wild and Feral Pigs 30

(a) Morphology ... 30

(b) Cytogenetics ... 33

(c) Anatomy ... 35

(i) Teeth .. 35

(ii) Bones .. 36

(iii) Kidneys ... 36

(iv) Central nervous system .. 37

(d) Behavior ... 38

(e) Biology ... 39
(c) Introduction into Hawaiian Islands.................. 173
(d) Economic importance and other uses.................. 173
(e) Weed characteristics................................. 174
 (i) High tolerance for variation in physical environment......... 174
 (ii) High fecundity...................................... 175
 (iii) Competitive ability.................................. 175
 (iv) Well developed insect and pest resistance.................. 175

Materials and Methods.. 176

Results.. 177
(a) Description of the strawberry guava fruit.............. 177
(b) Species of seeds germinating from coats and from droppings........ 178
(c) Fecal seed load.. 181
(d) Effect of gut treatment on seed germination............ 182
(e) Effects of gut treatment on seed coat.................... 185

Discussion... 192

CHAPTER 8. POPULATION CHARACTERISTICS.................. 201

Introduction.. 201
(a) Livetrappping techniques................................. 202
(b) Population estimates...................................... 206
(c) Age determination... 206
(d) Survivorship and fecundity patterns..................... 207
(e) Collection of reproductive data.......................... 208
(f) Group size.. 209
Results and Discussion .. 209

(a) Livetrapping .. 209
 (i) Trapping success .. 209
 (ii) Trap location and visitation 211
 (iii) Baits ... 211
 (iv) Trap design .. 214
 (v) Behavior of pigs in response to traps 215
 (vi) Trap-revealed movement patterns 215
 (vii) Survival in trapped animals 218

(b) Population estimation ... 221
 (i) Marked pigs remained marked throughout the trapping season 225
 (ii) Marked and unmarked pigs die or leave the valley at the same rate 225
 (iii) No pig is born or immigrates into the Valley between marking and recapture 225
 (iv) The probability of capturing a pig is the same for all pigs in the population 226

(c) Age-sex composition ... 228
(d) Survivorship and fecundity patterns 231
(e) Litter size and seasons of birth 236
(f) Group size composition and behavior 243

CHAPTER 9. HOME RANGE, MOVEMENT AND ACTIVITY PATTERNS 249

Introduction .. 249

Materials and Methods .. 252

(a) Transmitters .. 252
(b) Collar attachment .. 252
CHAPTER 11. SOURCES OF MORTALITY

- Entrapment in Mud
- Weather
- Parasites
- Dento-alveolar Diseases
- Other Diseases
- Feral Dog Predation
- Mongoose Predation

CHAPTER 12. MANAGEMENT

- Introduction
- Is a Management Decision Necessary?
 (a) Nature of the feral pig problem
 (i) Dispersal agent for the strawberry guava, Psidium cattleianum
 (ii) Reduction in abundance of native trees and herbaceous plants
 (iii) Disruption in forest subcanopy
 (iv) Establishment of weedy species
 (v) Soil erosion
 (vi) Increase in the number of sites of standing water
 (b) The consequences of doing nothing
 (i) Replacement of native forest formation by the exotic strawberry guava
 (ii) Increase in exotic species pool
 (iii) Loss of native plants
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nomenclature, synonyms, common names and distribution of wild pigs</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>Comparison of some major characters among extant species of wild pigs</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>Possible mating types among wild, domestic and feral pigs, and their expected karyotype frequencies</td>
<td>31</td>
</tr>
<tr>
<td>4</td>
<td>List of 17th-18th century illustrations of pigs in Hawaii and the Pacific area, as seen by artists, explorers and naturalists</td>
<td>49</td>
</tr>
<tr>
<td>5</td>
<td>Kill statistics for feral pigs shot on all Hawaiian islands in the Eradication of Destructive Wild Stock Program, 1910-1958</td>
<td>64</td>
</tr>
<tr>
<td>6</td>
<td>Land snails in Kipahulu Valley, Maui, Hawaii</td>
<td>99</td>
</tr>
<tr>
<td>7</td>
<td>Weights and body measurements for 22 feral pigs in Kipahulu Valley</td>
<td>118</td>
</tr>
<tr>
<td>8</td>
<td>Coat color composition of feral pigs in the upper and lower plateaus of Kipahulu Valley</td>
<td>121</td>
</tr>
<tr>
<td>9</td>
<td>Overall annual percentage composition (aggregate volume), occurrence and importance values of major food categories for feral pigs in the koa and ohia forests in Kipahulu Valley, as revealed by analyses of 28 stomachs</td>
<td>132</td>
</tr>
<tr>
<td>10</td>
<td>Seasonal variation in diets of feral pigs in koa forest (610 to 1190m), Kipahulu Valley</td>
<td>137</td>
</tr>
<tr>
<td>11</td>
<td>Average percentage composition of major food items in six stomachs collected from February to October 1980 in ohia forest (1180 to 1500m), Kipahulu Valley</td>
<td>138</td>
</tr>
<tr>
<td>12</td>
<td>Nutrient composition of plants eaten by feral pigs in Kipahulu Valley, Maui, Hawaii</td>
<td>141</td>
</tr>
<tr>
<td>13</td>
<td>Results of the analysis of variance for the effects of soil depth on the distribution of earthworms in the roseapple forest, Kipahulu Valley</td>
<td>153</td>
</tr>
<tr>
<td>14</td>
<td>Abundance of earthworms at three forest sites in Kipahulu Valley</td>
<td>153</td>
</tr>
</tbody>
</table>
15 Seedlings recovered from 123 plantings of feral pig droppings from August 1979 to September 1980 in Kipahulu Valley

16 Germination parameters for gut-treated and untreated (control) seeds of the strawberry guava, Psidium cattleianum Sabine

17 Results of germination trials for gut-treated and untreated seeds of P. cattleianum in Kipahulu Valley

18 Summary table for a two-way factorial analysis of variance (ANOVA) on the effects of germination site (guava zone vs. guava-free zone) and gut treatment on the germination rates of seeds of P. cattleianum

19 Percentage frequency in four types of seed coat scarifications in seeds of P. cattleianum after their passage through the digestive tracts of feral pigs in Kipahulu Valley

20 Trap-night data for 136 feral pig captures and recaptures in Kipahulu Valley from July 1979 through November 1980

21 Visitation frequency and trappability data of feral pigs at individual trap site from July 1979 through November 1980

22 Relative effectiveness of food baits expressed as the number of captures per 100 visits to a trap site

23 Population size of feral pig by trapping session estimated by four methods

24 Survivorship (λ_x) and fecundity (m_x) values for feral pigs in Kipahulu Valley

25 Examples of home range and movement studies in free-ranging pigs using radiotelemetry

26 A summary of commonly used methods for calculation of home range size

27 Biological data, length of radiotracking period and number of radiolocations for 13 feral pigs in Kipahulu Valley

28 Home range size estimates for nine feral pigs in Kipahulu Valley

29 Results of circularity test for home ranges of nine feral pigs in Kipahulu Valley
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Home range axis lengths for eight feral pigs in Kipahulu Valley</td>
<td>265</td>
</tr>
<tr>
<td>31</td>
<td>Diel home range parameters for three boars and three sows monitored from November 1979 to March 1980 in Kipahulu Valley</td>
<td>267</td>
</tr>
<tr>
<td>32</td>
<td>Published home range size of feral and wild populations of Sus scrofa</td>
<td>276</td>
</tr>
<tr>
<td>33</td>
<td>Laboratory methods of blood analyses</td>
<td>286</td>
</tr>
<tr>
<td>34</td>
<td>Statistical description of biochemical parameters for 31 feral pigs in Kipahulu Valley, Maui, Hawaii</td>
<td>288</td>
</tr>
<tr>
<td>35</td>
<td>Statistical description of hematological parameters for feral pigs in Kipahulu Valley, Maui, Hawaii</td>
<td>289</td>
</tr>
<tr>
<td>36</td>
<td>Serum T3, T4 values by radioimmunoassay and free thyroxine T7 index for 27 feral pigs in Kipahulu Valley, Maui, Hawaii</td>
<td>291</td>
</tr>
<tr>
<td>37</td>
<td>Normal serum T3, T4 and T7 values in domestic pigs</td>
<td>291</td>
</tr>
<tr>
<td>38</td>
<td>Serological parameters of feral pigs that show differences between sexes</td>
<td>293</td>
</tr>
<tr>
<td>39</td>
<td>Serological parameters of feral pigs that show significant differences between age classes</td>
<td>293</td>
</tr>
<tr>
<td>40</td>
<td>Comparison of selected biochemical parameters (means and/or range) for feral, wild and domestic pigs</td>
<td>298</td>
</tr>
<tr>
<td>41</td>
<td>Comparison of leucocytic variables for feral, wild and domestic pigs</td>
<td>300</td>
</tr>
<tr>
<td>42</td>
<td>Comparison of erythrocytic variables (means and/or range) for feral, wild and domestic pigs</td>
<td>306</td>
</tr>
<tr>
<td>43</td>
<td>Data on feral pigs which died from natural causes</td>
<td>311</td>
</tr>
<tr>
<td>44</td>
<td>Prevalence and intensity of parasite infestation in feral pigs in Kipahulu Valley</td>
<td>315</td>
</tr>
<tr>
<td>45</td>
<td>Prevalence of nematode parasites in relation to age in 38 feral pigs in Kipahulu Valley</td>
<td>317</td>
</tr>
<tr>
<td>46</td>
<td>Age related prevalence of diseased, cupped or missing permanent teeth per lower jaw in 68 feral pigs in Kipahulu Valley</td>
<td>326</td>
</tr>
</tbody>
</table>
47 Example of a matrix form of organization for management units and programs in Kipahulu Valley.......................... 363

48 Management options for the reduction and eradication of feral pigs in Kipahulu Valley................................. 365
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Venn diagram classification of modern day Artiodactyla</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>Distribution of the aboriginal Polynesian pig in Oceania during pre-European era</td>
<td>46</td>
</tr>
<tr>
<td>3</td>
<td>Pariah population model explaining apparent delayed feralization of pigs in Polynesian times</td>
<td>72</td>
</tr>
<tr>
<td>4</td>
<td>Map of Kipahulu Valley showing its location in Haleakala National Park and in the Hawaiian archipelago, as well as field installations and important landmark reference points</td>
<td>77</td>
</tr>
<tr>
<td>5</td>
<td>A profile diagram of Kipahulu Valley and its surrounding areas</td>
<td>79</td>
</tr>
<tr>
<td>6</td>
<td>Soil sampling sites in Kipahulu Valley, Maui, Hawaii</td>
<td>83</td>
</tr>
<tr>
<td>7</td>
<td>Soil sample analyses results</td>
<td>83</td>
</tr>
<tr>
<td>8</td>
<td>Mean monthly temperature and precipitation for weather stations Haleakala RS 338 (2142m) and Kipahulu 258 (79m)</td>
<td>87</td>
</tr>
<tr>
<td>9</td>
<td>Mean monthly temperature and relative humidity for Kipahulu Valley stations B (K665m) and C (E1447m)</td>
<td>89</td>
</tr>
<tr>
<td>10</td>
<td>A generalized vegetation map of Kipahulu Valley, Haleakala National Park, Maui, Hawaii</td>
<td>92</td>
</tr>
<tr>
<td>11</td>
<td>Pig invasion into Kipahulu Valley, Haleakala National Park, Maui, Hawaii</td>
<td>102</td>
</tr>
<tr>
<td>12</td>
<td>Feral pigs in Kipahulu Valley: (a) Two sows in a strawberry guava (Psidium cattleianum) forest at E700m, (b) A white and spotted pig in a dense fern (Athyrium sp.) cover at L850m</td>
<td>110</td>
</tr>
<tr>
<td>13</td>
<td>Examples of ear abnormalities in feral pigs in Kipahulu Valley, Maui</td>
<td>114</td>
</tr>
<tr>
<td>14</td>
<td>Coat color classes and composition of feral pigs in Kipahulu Valley, Maui, Hawaii</td>
<td>116</td>
</tr>
<tr>
<td>15</td>
<td>Plot of individual stomach volume against age for 28 feral pigs shot in Kipahulu Valley between 610 and 1500 m</td>
<td>131</td>
</tr>
</tbody>
</table>
16 Monthly variations in percentage composition of major food categories as revealed by the analyses of 22 stomachs collected in the koa forest (610 to 1190m), Kipahulu Valley.. 135

17 Monthly variation in the proportion of feral pig droppings containing seeds of *Psidium cattleianum*................................. 140

18 Vertical troughing of standing tree ferns (*Cibotium* sp.) by feral pigs in Kipahulu Valley.. 147

19 Tree fern (*Cibotium* sp.) frond pulling and feeding habits of feral pigs in Kipahulu Valley.. 149

20 (a) Vertical distribution of earthworms in Kipahulu Valley, (b) depth distribution of earthworms in roseapple forest, as determined by ten 0.5 x 0.5m quadrats... 152

21 Regression equations for seed count (y) per strawberry guava fruit (*Psidium cattleianum*) against the fruit's cross diameter (*x_1*) and polar diameter (*x_2*)............................ 179

22 Germination curves for gut-treated (voided) and untreated (control) seeds of the strawberry guava, *Psidium cattleianum*... 184

23 Types of seed coat scarification in seeds of the strawberry guava, *Psidium cattleianum*, after their passage through the digestive tracts of the feral pig.. 190

24 Location of corral and box traps in Kipahulu Valley.............. 204

25 Capture and recapture locations (trap sites) for all feral pig recaptures during the mark-recapture study from July 1979 to December 1980, in Kipahulu Valley, Maui.......................... 217

26 Recapture frequency for feral pigs tagged and released on the upper plateau, Kipahulu Valley, Maui................................. 222

27 Age-sex composition of 122 feral pigs in Kipahulu Valley..... 229

28 Crude and adjusted survivorship curves for feral pig populations in Kipahulu Valley... 233

29 Estimated breeding dates of (a) 18 groups of fetuses, and (b) 52 trapped animals that were less than one year old........ 237

30 Prenatal and preweaning mortality patterns in feral pigs in Kipahulu Valley... 239

31 Group size and group type frequency distributions in feral pigs from koa and ohia forests in Kipahulu Valley 244
32 Home ranges of feral pigs delineated by the minimum-area (solid lines) and modified minimum-area (broken lines) methods ... 259

33 Composite home range maps of nine feral pigs in Kipahulu Valley, Maui .. 263

34 Diel activity cycle of five feral pigs monitored from November 1979 to March 1980 .. 269

35 Locations and entry-exit movement patterns of three radiotagged pigs in the lower section of the upper plateau, Kipahulu Valley, Maui .. 271

36 Prevalence of diseased, cupped or missing teeth in erupted permanent mandibular teeth in 68 feral pigs in Kipahulu Valley .. 327

37 Subdivision of Kipahulu Valley into five management units ... 346

38 Proposed live-trapping and fenceline activities for management subunits 1A and 1B ... 352

39 Examples of some management functions that could be built into fencelines separating two management units or along perimeter fences .. 359